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The free ‘performance’ lunch is over
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Herb Sutter - 2005
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Stanford - CPUDB



The free ‘performance’ lunch is over
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Multi threading

I/O 

Waste of resources

Advanced frameworks - require DEV 
training



What tools do we have now?
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●

Parallelism:
● Speed up a task by splitting it to sub-tasks and exploiting multiple processing units
● Achieved by multiple CPUs
● Does a lot of things simultaneously
● Performance: latency (time unit)

Concurrency v.s. Parallelism 
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Concurrency:
● Schedule multiple largely independent tasks to a set of computational resources
● Achieved by context switching
● Deals with a lot of things simultaneously
● Performance: throughput (tasks / time unit)

L =  λ * W
Level of concurrency Latency

Throughput



How do we achieve concurrency?
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Threading models
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● Single threaded - Sequential

● Multi-threaded - Thread pool

● Multi-threaded - Fork/Join

● Single threaded - Event Loop (e.g. Javascript)

● LMAX Disruptor

● Reactive programming

● Co-rutines - Async / Await (e.g. Python)

● User-land threads (e.g. Go)

* Not exhaustive



Single threaded - Sequential
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● How most of us learned to code

● How most languages were originally designed

● The code is executed in sequence, instruction by instruction

● No concurrent memory access

● Latency is the driving factor of the level of concurrency



Single threaded - Sequential
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Model Throughput Parallelism Ease of 
understanding

Development 
Experience Error handling Debugging Profiling

Single threaded 1 task None - low Easy Good Easy Easy Easy

Thread pool

Fork/join

Event loop

Reactive

Async / await

User-land threads



Multi-threaded - Thread Pool
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● Executing a set of tasks by a group of similar threads
● A task keeps the thread until it finished execution
● Increased complexity and problems caused by sharing (race conditions, thread local leaks etc.)
● Problematic cancellations
● Multiple types of thread pools: fixed, cached (elastic), scheduled, single threaded etc.
● Number of threads and efficient usage directly influences the level of concurrency.



Multi-threaded - Thread Pool
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Model Throughput Parallelism Ease of 
understanding

Development 
Experience Error handling Debugging Profiling

Single threaded 1 task None - low Easy Good Easy Easy Easy

Thread pool Task/thread Medium++ Easy Good Easy Medium-- Medium--

Fork/join pool

Event loop

Reactive

Async / await

User-land threads



Multi-threaded - Fork/Join
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● Thread Pool model + divide and conquer

● Each thread in the pool has a Dequeue

● Implements a work-stealing algorithm

● Increases efficiency for high number of tasks

● Shares same challenges with thread pools

● Not friendly with blocking code



Multi-threaded - Fork/Join
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Model Throughput Parallelism Ease of 
understanding

Development 
Experience Error handling Debugging Profiling

Single threaded 1 task None - low Easy Good Easy Easy Easy

Thread pool Task/thread Medium++ Easy Good Easy Medium-- Medium--

Fork/join pool Task/thread++ High* Medium Average Medium-- Medium Medium

Event loop

Reactive

Async / await

User-land threads



Single threaded - Event Loop
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● Only 1 thread handles tasks from a queue in a while loop

● Makes use of callbacks and non-blocking I/O

● Avoids race conditions and general leaks

● Often incompatible APIs (in Java)

● Introduces new challenges:
○ Callback hell
○ Lost context
○ Unpredictable executions

● Cooperative concurrency model



Single threaded - Event Loop
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Model Throughput Parallelism Ease of 
understanding

Development 
Experience Error handling Debugging Profiling

Single threaded 1 task None - low Easy Good Easy Easy Easy

Thread pool Task/thread Medium++ Easy Good Easy Medium-- Medium--

Fork/join pool Task/thread++ High Medium Average Medium-- Medium Medium

Event loop High None - low Medium Average - Bad Medium Medium Hard

Reactive

Async / await

User-land threads



Reactive model
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● Makes the push-based publisher - subscriber pattern a first level citizen

● Logic is encapsulated in steps of data stream processing

● Threads become abstracted by Schedulers (sort of thread pools)

● Concurrency mainly by publishOn / subscribeOn

● Tooling support gradually evolved



Reactive model
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● Solves the callback hell

● Backpressure handling

● Complex logic becomes more concise

● Can signal end of stream

● Can re-create algorithms like fork-join, disruptor etc.



Reactive model
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● Completely new API; low compatibility

● Steep learning curve

● Easy to do the wrong thing

● Can get quite complex

● Tooling support gradually evolved, but still not 

as good



Reactive model
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Model Throughput Parallelism Ease of 
understanding

Development 
Experience Error handling Debugging Profiling

Single threaded 1 task None - low Easy Good Easy Easy Easy

Thread pool Task/thread Medium++ Easy Good Easy Medium-- Medium--

Fork/join pool Task/thread++ High Medium Average Medium-- Medium Medium

Event loop High None - low Medium Average - Bad Medium Medium Hard

Reactive Very High High Hard Good Medium Hard Hard

Async / await

User-land threads



Coroutines - Async / Await

Globant proprietary | Confidential information

● Builds on top of the Event loop thread model

● Adds support for explicit means to transfer control to other coroutines - async / await

● Can create millions of coroutines; lightweight

● Generators, actor models, state machines

● Cooperative concurrency model



Corutines - Async / Await
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Model Throughput Parallelism Ease of 
understanding

Development 
Experience Error handling Debugging Profiling

Single threaded 1 task None - low Easy Good Easy Easy Easy

Thread pool Task/thread Medium++ Easy Good Easy Medium-- Medium--

Fork/join pool Task/thread++ High Medium Average Medium-- Medium Medium

Event loop High None - low Medium Average - Bad Medium Medium Hard

Reactive Very High High Hard Good Medium Hard Hard

Async / await High None - low Medium Average Easy Medium Medium

User-land threads



User-land threads
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● Coroutines multiplexed on threads a.k.a Green Threads or Fibers

● Implicitly yields control.

● Implementation relies a lot on the language specifics.

● Keeps a simpler, more classic programming model

● Re-introduces challenges appearing with shared resources

● Provides new ways to tackle them: channels, better race conditions detection



User-land threads
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Model Throughput Parallelism Ease of 
understanding

Development 
Experience Error handling Debugging Profiling

Single threaded 1 task None - low Easy Good Easy Easy Easy

Thread pool Task/thread Medium++ Easy Good Easy Medium-- Medium--

Fork/join pool Task/thread++ High Medium Average Medium-- Medium Medium

Event loop High None - low Medium Average - Bad Medium Medium Hard

Reactive Very High High Hard Good Medium Hard Hard

Async / await High None - low Medium Average Easy Medium Medium

User-land threads Very High High Easy Good Easy Medium Medium



What does Project Loom bring?
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"I think [Project] Loom is going to kill reactive programming"

Brian Goetz
Java Language Architect at Oracle.   

Author, Java Concurrency in Practice



What is Project Loom?
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A. Teaching Java duke to weave carpets with the loom?

B. Preventing a looming danger regarding Java usage?

C. Attempt to modernise concurrency in Java?



Project Loom Goals

Globant proprietary | Confidential information

● Reduce the difficulty of writing efficient concurrent applications
● Eliminate the tradeoff between simplicity and efficiency in writing 

concurrent programs

● Ensure easy adoption - leverage the existing APIs
● Thread.currentThread() and ThreadLocal - keep working

>2KB metadata
>1MB of stack

200-300Kb metadata
Pay-as-you-go stack

1-10µs ~200ns



Terminology
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1. Virtual threads                    Thread.startVirtualThread(Runnable)

2. Continuations           suspend, resume tasks - behind the scenes

3. Schedulers ForkJoinPool used underneath



Multiplexing virtual threads
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Alan Bateman - Project Loom: Modern scalable concurrency for the Java platform



Operations that are virtual thread friendly
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Operations that pin the thread
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Operations that pin the thread
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In general, operations that get an object monitor, pin the carrier thread
synchronized + Virtual threads = not love



Virtual threads - Troubleshooting
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Detecting pinning:
● -Djdk.tracePinnedThreads(=full|short)
● Prints stack trace of virtual thread when parking pins it’s carrier thread

● Full = prints complete stack trace
● Short = includes only frames with problematic code

Thread dumps:
● Doesn’t work by default
● Tooling currently in development
● Some prototypes available that will include all virtual threads started with an Executor

* May evolve until official release



Virtual threads - Debugger support

Globant proprietary | Confidential information

Debugger changes:
● You can’t view all the virtual threads in the debugger when breaking
● Not supported: stop, interrupt, popFrame, forceEarlyReturn, setValue

Virtual threads + breakpoints:
● Hitting a breakpoint pins the virtual thread to carrier
● Single stepping works until virtual thread yields
● Recommendation: suspend all threads when breakpoint is hit and resume all threads when stepping

* May evolve until official release



Mad science experiments :D
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How stuff works in code
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● virtual threads are java entities, independent of OS threads

● java.lang.Thread is used for both kinds of threads, virtual and OS

● virtual threads require carrier threads - OS Threads - to run on

a. a carrier thread runs a virtual thread by mounting it

b. if the VT blocks, the stack is stored and the VT is unmounted to be resumed later

● millions of virtual threads can run on few carrier threads



Hitchhiking
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Hello World
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C:\Program Files\Java\jdk-17\bin>java Test.java

Hello Loom from VirtualThread[#15,ForkJoinPool-1-worker-1,CarrierThreads]!

Hello World from Thread[main,5,main]!

-Djdk.defaultScheduler.parallelism=N,
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    final boolean USE_VIRTUAL_THREADS = false;
    final int CARRIER_THREAD_COUNT = 1;
    final int TASK_COUNT = 2;

Regular 1 Thread Pool

7.69 s



Globant proprietary | Confidential information

    final boolean USE_VIRTUAL_THREADS = true;
    final int CARRIER_THREAD_COUNT = 1;
    final int TASK_COUNT = 2;

Virtual Thread Pool with 1 Thread Carrier Pool

5.72 s
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    final boolean USE_VIRTUAL_THREADS = false;
    final int CARRIER_THREAD_COUNT = 2;
    final int TASK_COUNT = 6;

Regular 1 Thread Pool

11.44 s
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    final boolean USE_VIRTUAL_THREADS = true;
    final int CARRIER_THREAD_COUNT = 2;
    final int TASK_COUNT = 6;

Regular 1 Thread Pool

7.66 s



Simple HTTP Server + JMeter test

Globant proprietary | Confidential information

TOPIC



JMeter test settings
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Dumb Threads
JConsole
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Dumb Threads - response codes
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Dumb Threads - response time per 
thread count
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Dumb Threads - summary - 29% 
errors
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Virtual Threads
JConsole
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Virtual Threads
JConsole
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No errors...



Virtual Threads
JConsole
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Virtual Threads
JConsole
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Smart Threads - Executor
Code
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Smart Threads - Executor
JConsole
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Smart Threads - Executor
JConsole
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Smart Threads - Executor
JConsole
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Thread pool implementation

Virtual Threads

Green line at 6.5 sec



Smart Threads - Executor
JConsole
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Globant Development Center La Plata, Argentina

Takeaway



What we know so far
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1. Project Loom is delivering on it’s promise - reducing the 
difficulty of writing efficient concurrent applications

2. Virtual threads implicitly convert blocking APIs into a 
async/await pattern - and you won't even have to be aware 
of it as user of an API (most of the time at least).

3. Release? Not JDK17 - fingers crossed for JDK 18 ?  No 
promises have been made...



Useful links
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More Info

1. Taking a look at Virtual Threads (Project Loom)
○ One code example showed was from this article - attribution license

2. Loom Proposal.md
○ Hear it from the dev lead of the project himself - what Loom wants to achieve

 
3. Java's Project Loom, Virtual Threads and Structured Concurrency with Ron Pressler

○ Podcast about Project Loom - with Ron - the Dev Lead of the project

4. Download JDK18 + Loom Builds - to run it yourself
○ https://jdk.java.net/loom/
○ The existence of EA builds does not imply that the functionality being tested will be present in any 

particular GA release.

5.      All examples are on Github here: https://github.com/lucaalex87/java-loom-test

 

 

https://mbien.dev/blog/entry/taking-a-look-at-virtual
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://www.infoq.com/podcasts/java-project-loom/
https://jdk.java.net/loom/
https://jdk.java.net/loom/
https://github.com/lucaalex87/java-loom-test


Q & A
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Thank You!
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