Demystifying
Java Fibers

G)»

Who am 1?

Globant TDC Cluj
|
Alex Dan Luca, Java architect in Andrei Draghia, Java architect in
Globant Cluj Globant Cluj

Globant)

O B

What tools do we haVﬁ

What does Prme&llﬂ: rin
Mad science e"i?b'enments.D 4
Takeaway

Globant)

e v

Globant Development Center in NYG,@A

The free ‘performance’ lunch is over

./

10,000,000 ,
| |
Dual-Core Itanium 2
1,000,000 ! : !
- ‘ | |
Intel CPU Trends A
{sources: Intel, Wikipedia, K. Olukotun)
100,000 : ‘
10,000
[pentium 8
1,000 |
100
|] I‘
10 .
!""’i; oo
a4 - |
1 ' | m Transistors (000)
‘./. ‘ @ Clock Speed (MHz)
1 APower (W)
‘ @ Perf/Clock (ILP)
0 ‘ ‘

1970 1975 1980

Globant proprietary | Confidential information

1985

1990

1995

2000

2005

=0 Harb Sutter - 2005

Globant)

Clock Frequency

Clock Frequency

10000 AMD

Cypress
DEC
Fujitsu
Hitachi
HP

IBM
Intel

1000

100

Motorola
MIPS
SGI

Sun

10 ‘: A
® °®

Clock Frequency (MHz)

Cyrix
HAL
NexGen

® 0 ® © © 0 0 & © 0 0 0 & 0 0

=
@ 12V
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

0

Year

Stanford - CPUDB

Globant proprietary | Confidential information GlObant)

‘ The free ‘performance’ lunch is over

Multi threading
1/0
'Q
Waste of resources ’
‘C

Advanced frameworks - require DEV ’ |
training

Globant proprietary | Confidential information

Globant Development Center in NYG,@A

Concurrency v.s. Parallelism F

Concurrency: 3
e Schedule multiple largely independent tasks to a set of computational resources \b
e Achieved by context switching -
e Deals with a lot of things simultaneously
e Performance: throughput (tasks / time unit)

Parallelism:
Speed up a task by splitting it to sub-tasks and exploiting multiple processing units

e Achieved by multiple CPUs
e Does a lot of things simultaneously
e Performance: latency (time unit) Throughput
L=A*W
Level of concurrency ~ Latency

Globant proprietary | Confidential information GlObant)

How do we achieve concurrency?

code

data

files

registers

stack

thread — ;

single-threaded process

Globant proprietary | Confidential information

code data files
registers ||| registers ||| registers
stack stack stack
P S

— thread

multithreaded process

Threading models

e Single threaded - Sequential

e Multi-threaded - Thread pool

e Multi-threaded - Fork/Join

e Single threaded - Event Loop (e.g. Javascript)
e LMAX Disruptor

e Reactive programming

e Co-rutines - Async / Await (e.g. Python)

User-land threads (e.g. Go)

* Not exhaustive

Globant proprietary | Confidential information

Single threaded - Sequential

e How most of us learned to code

e How most languages were originally designed

e The code is executed in sequence, instruction by instruction
e No concurrent memory access

e Latency is the driving factor of the level of concurrency

Program
thread ! - 2 4

Code
executed
elsewhere

Waiting for response

Globant proprietary | Confidential information GlObant)

Single threaded - Sequential

Ease of Development

L] AEE ST understanding Experience

Error handling Debugging Profiling

Single threaded 1 task None-low | Easy Good Easy Easy Easy

Thread pool

Fork/join

Event loop

Reactive

Async / await

User-land threads

Globant proprietary | Confidential information Globant)

Multi-threaded - Thread Pool

A task keeps the thread until it finished execution

Problematic cancellations

Task Queue

Executing a set of tasks by a group of similar threads

Increased complexity and problems caused by sharing (race conditions, thread local leaks etc.)

Multiple types of thread pools: fixed, cached (elastic), scheduled, single threaded etc.
Number of threads and efficient usage directly influences the level of concurrency.

- (@@ — O —1

Thread
Pool O

O

O

Y
\.‘

Completed Tasks

-(@@@@@@@© «— O

Globant proprietary | Confidential information

Globant)

Multi-threaded - Thread Pool

. Ease of Development . . o
Throughput Parallelism understanding Experience Error handling Debugging Profiling
Single threaded 1 task None-low | Easy Good Easy Easy Easy
Thread pool Task/thread Medium++ | Easy Good Easy Medium-- | Medium-

Fork/join pool

Event loop

Reactive

Async / await

User-land threads

Globant proprietary | Confidential information Globant)

Multi-threaded - Fork/Join

e Thread Pool model + divide and conquer

e Eachthread in the pool has a Dequeue

e Implements a work-stealing algorithm

e Increases efficiency for high number of tasks
e Shares same challenges with thread pools

e Not friendly with blocking code

Globant proprietary | Confidential information

Submission queue

push()} push(){ push(){ push(){

1 1 1 1 1 1 1 1
I 1 I 1 I 1 I 1
1 1] 1] 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1] 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1] 1 1 1
] 1 I 1 I 1 1 1
1 1 1 1 1 1 1 1
] 1 I 1 I 1 I 1
1 1 1 1 1 1 1 1
1 1 1 1 I 1 1 1
1 1] 1] 1 1 1
1 1 I 1 I 1 I 1
1 1 1 1] 1 1 1
] 1 I 1 I 1 I 1
1 1 1 1] 1 1 1
1 1] 1] 1 1 1
1 1 I 1 I 1 1 1
] 1 I 1 I 1 I 1
: deque : : deque : : deque : : deque :

Thread 1 Thread 2 Thread 3 Thread 4

Globant)

Multi-threaded - Fork/Join

Throughput Parallelism un di::; z:ling D:)‘(’:Ieor& r:::t Error handling Debugging Profiling
Single threaded 1 task None-low | Easy Good Easy Easy Easy
Thread pool Task/thread Medium++ | Easy Good Easy Medium-- | Medium-
Fork/join pool Task/thread++ | High* Medium Average Medium-- Medium Medium
Event loop
Reactive
Async / await
User-land threads

Globant proprietary | Confidential information Globant)

Single threaded - Event Loop

e Only 1 thread handles tasks from a queue in a while loop
e Makes use of callbacks and non-blocking 1/0
e Avoids race conditions and general leaks
e Often incompatible APIs (in Java)
e Introduces new challenges:

o Callback hell

o Lost context

o Unpredictable executions

e Cooperative concurrency model

A
NN

2 A P\Ti
e N Ay
o LRSS
AN A

Globant proprietary | Confidential information Globant)

Single threaded - Event Loop

Throughput Parallelism un di?:; z;ing DI?)‘(,:::iI:; r:::t Error handling Debugging Profiling
Single threaded 1 task None-low | Easy Good Easy Easy Easy
Thread pool Task/thread Medium++ | Easy Good Easy Medium-- | Medium-
Fork/join pool Task/thread++ | High Medium Average Medium-- Medium Medium
Event loop High None -low | Medium Average - Bad | Medium Medium Hard
Reactive

Async / await

User-land threads

Globant proprietary | Confidential information

Globant)

Reactive model

e Makes the push-based publisher - subscriber pattern a first level citizen

e Logicis encapsulated in steps of data stream processing

e Threads become abstracted by Schedulers (sort of thread pools)

e Concurrency mainly by publishOn / subscribeOn

e Tooling support gradually evolved

Globant proprietary | Confidential information

This is the timeline of the Flux
Time flows from left to right

This Flux is the result
of the transformation

. ; This vertical line indicates that
These are the items emitted by the Flux {0 Flux has completed successfully

o0+

v ' v v These dotted lines and this box

indicate that a transformation

is being applied to the FI
operator (...) is being appli ux

The text inside the box shows

the nature of the transformation

v

v :
R/
O—X >

If for some reason the Flux terminates

abnormally, with an error, the vertical
line is replaced by an X

Globant)

Reactive model

userService.getFavorites(userld, Callback<List<String>>() { @
onSuccess(List<String> list) {
(list.isEmpty()) { @
suggestionService.getSuggestions(Callback<List<Favorite>>() {
onSuccess (List<Favorite> list) {

userService.getFavorites(userld)
.timeout (Duration.ofMillis(800)) @

.onErrorResume(cacheService.cachedFavoritesFor(userld)) @
.flatMap(favoriteService: :getDetails)
.switchIfEmpty(suggestionService.ge gestions())

.take(5)

.publishOn(UiUtils hreadScheduler())

.subscribe(uilList: , UiUtils::erroxrPopup) ;

UiUtils.submitOnUiThread(() -> {
list.stream()
Llimit(5)

.forEach(uiList: :show); @

)i

onError (Throwable error) { @
UiUtils.errorPopup(error);

})i
} {
list.stream() @
Llimit(5)
.forEach(favid -> favoriteService.getDetails(favid, @
Callback<Favorite>() {
onSuccess (Favorite details) {

ils.submitOnuU rec .show(details)); [] SOIVeS the Ca”baCk he”

onError (Throwable error) [] BaCka’eSSUI'e handllng

UiUtils.errorPopup(error);

e Complex logic becomes more concise

e Cansignal end of stream
onError (Throwable error) {
UiUtils.errorPopup(error);

e Canre-create algorithms like fork-join, disruptor etc.

Globant proprietary | Confidential information Globant)

Reactive model

e Completely new API; low compatibility

e Steep learning curve

e Easyto do the wrong thing

e (Can get quite complex

e Tooling support gradually evolved, but still not

as good

java.lang.IndexOutOfBoundsException: Source emitted more than one item
at reactor.core.publisher.MonoSingle$SingleSubscriber.onNext(MonoSingle.java:l
at

reactor.core.publisher.FluxOnAssembly$OnAssemblySubscriber.onNext (FluxOnAssembly. java:

at reactor.core.publisher
at reactor.core.publisher

at reactor.core.publisher
at reactor.core.publisher

.subscribeWith (Mono
.subscribe(Mono. jave
.subscribe(Mono. jav
.subscribe(Mono. jav

)
at reactor.guide.GuideTests.debuggingActivated(GuideTests.java:1000)

Suppressed: reactor.core.publisher.FluxOnAssembly$OnAssemblyException: .

mbly trace from producer [reactor.core.publisher Si
reactor.core.publisher.Flux.single(Flux.java 76)
reactor.guide.GuideTest atterAndGather (GuideTests. java
reactor.guide.GuideTests.populateDebug(GuideTests. java
org.junit.rules.TestWatcher$l.evaluate(TestWatcher. java:
org.junit.rules.RunRules.evaluate(RunRules. java: 2(

Error has been observed by the following operator(s):

. Flux.single = reactor.guide.GuideTests.scatterAndGather (GuideTests.java

reactor-bus

—

(_ Error Consumer

reactor-core

Environment

assigned

routes uncaught exceptions

A,

Functional Interfaces

Processor

Processor

Processor

Ready-to-Use Core Processors

lDispatcher
i

A
I
i
h

Ve

finds

reactor-stream

e

f (schedu\es) o= -@spatcmn - subscnbeOrD
0 /

]
1
] i 1
1
1

\

Subscriber -
Processor -
Action

Stream -
Publisher

next - complete - error

Async ChannelStream

Client/Server

creates

Close Publisher

pass on connection

Implementing
Driver:
Netty,
ZeroMQ...

Reactor Channel Handler

reactor-net

> filter()
SN

Write Publisher

flush/confirms write(s)
on Complete

-

Subscriber -
Terminal
Action

Write Confirm
Publisher

—

Globant)

Reactive model

Throughput Parallelism un di?:; z;ing DI?)‘(,:::iI:; r:::t Error handling Debugging Profiling
Single threaded 1 task None-low | Easy Good Easy Easy Easy
Thread pool Task/thread Medium++ | Easy Good Easy Medium-- | Medium-
Fork/join pool Task/thread++ | High Medium Average Medium-- Medium Medium
Event loop High None -low | Medium Average - Bad | Medium Medium Hard
Reactive Very High High Hard Good Medium Hard Hard
Async / await
User-land threads

Globant proprietary | Confidential information

Globant)

Coroutines - Async / Await

e Builds on top of the Event loop thread model

e Adds support for explicit means to transfer control to other coroutines - async / await
e Can create millions of coroutines; lightweight

e Generators, actor models, state machines

e Cooperative concurrency model

Globant proprietary | Confidential information GlObant)

Corutines - Async / Await

Throughput Parallelism un di?:; z;ing DE)‘(’:::F; r:::t Error handling Debugging Profiling
Single threaded 1 task None-low | Easy Good Easy Easy Easy
Thread pool Task/thread Medium++ | Easy Good Easy Medium-- | Medium-
Fork/join pool Task/thread++ | High Medium Average Medium-- Medium Medium
Event loop High None -low | Medium Average - Bad | Medium Medium Hard
Reactive Very High High Hard Good Medium Hard Hard
Async / await High None - low | Medium Average Easy Medium Medium
User-land threads

Globant proprietary | Confidential information

Globant)

User-land threads

Coroutines multiplexed on threads a.k.a Green Threads or Fibers
e Implicitly yields control.

e Implementation relies a lot on the language specifics.

e Keeps a simpler, more classic programming model

e Re-introduces challenges appearing with shared resources

e Provides new ways to tackle them: channels, better race conditions detection

Globant proprietary | Confidential information GlObant)

User-land threads

Throughput Parallelism un di?:; z;ing DE)‘(’:::F; T::t Error handling Debugging Profiling
Single threaded 1 task None-low | Easy Good Easy Easy Easy
Thread pool Task/thread Medium++ | Easy Good Easy Medium-- | Medium-
Fork/join pool Task/thread++ | High Medium Average Medium-- Medium Medium
Event loop High None -low | Medium Average - Bad | Medium Medium Hard
Reactive Very High High Hard Good Medium Hard Hard
Async / await High None - low | Medium Average Easy Medium Medium
User-land threads | Very High High Easy Good Easy Medium Medium

Globant proprietary | Confidential information

Globant)

e v

Globant Development Center in NYG,@A

eactive program ung

n man%oetz

a Lang ge Architect at Oracle.
uthor,-Java Concftrrencﬂ in Practice

< ® |

Globant)

What is Project Loom?

Teaching Java duke to weave carpets with the loom? NOP E

(warerawanan (Q

I N S i
o |
| l‘
I , ,

Attempt to modernise concurrency in Java? §

Globant proprietary | Confidential information GlObant)

Project Loom Goals

e Reduce the difficulty of writing efficient concurrent applications
e Eliminate the tradeoff between simplicity and efficiency in writing
concurrent programs

e Ensure easy adoption - leverage the existing APIs
e Thread.currentThread() and ThreadLocal - keep working

>2KB metadata 200-300Kb metadata
>1MB of stack Pay-as-you-go stack

1-10ps ~200ns

Globant proprietary | Confidential information

Terminology

1 . V| rtual th readS Thread.startVirtualThread (Runnable)

2. Continuations suspend, resume tasks - behind the scenes

3. Schedulers ForkJoinPool used underneath

Globant)»

Multiplexing virtual threads

lightweight/virtual threads

“carrier” heavyweight/kernel threads managed by scheduler

Alan Bateman - Project Loom: Modern scalable concurrency for the Java platform
Globant proprietary | Confidential informat ion Globant)

Operations that are virtual thread friendly

API Method(s) Notes

java.lang.Thread sleep, join join to wait for a virtual thread to terminate
java.lang.Process waitFor Linux/macOS only

java.util.concurrent All blocking operations

java.net.Socket connect, read, write Socket constructors with a host name parameter may need to do a lookup with InetAddress, see below
java.net.ServerSocket accept

java.net.DatagramSocket/MulticastSocket | receive connect, disconnect and send do not block
java.nio.channels.SocketChannel connect, read, write

java.nio.channels.ServerSocketChannel accept

java.nio.channels.DatagramChannel read, receive connect, disconnect, send, and write do not block
java.nio.channels.Pipe.SourceChannel read

java.nio.channels.Pipe.SinkChannel write

Console streams (System.in, out, err) read, write, printf Linux/macOS only

Globant proprietary | Confidential information GlObant)

Operations that pin the thread

API

java.lang.Object
java.lang.Process
java.io.File
java.io.FilelnputStream
java.io.FileOutputStream
java.io.RandomAccessFile
java.net.InetAddress
java.nio.MappedByteBuffer
java.nio.channels.Selector
java.nio.channels.FileChannel

java.nio.file

Globant proprietary | Confidential information

Method(s)

wait

waitFor

All file I/O operations

open, read, skip

open, write

open, read, write, seek

All lookup operations

force

All blocking selection operations
read, write, lock, truncate, force, transferTo

All file I/O operations

Notes

Windows only

InetAddress SPI in the works that will allow deploying a virtual thread friendly name resolver

Globant)

Operations that pin the thread

In general, operations that get an object monitor, pin the carrier thread
synchronized + Virtual threads = not love

API Method(s) Notes

java.lang.Thread join join to wait for a kernel thread to terminate
java.lang.Process All operations on the input/output/error streams

Console streams (System.in, out, err) | read, write, printf Windows only

java.io.Console All read, format, printf operations

Globant proprietary | Confidential information

Globant)

Virtual threads - Troubleshooting

Detecting pinning:
e -Djdk.tracePinnedThreads(=full|short)
e Prints stack trace of virtual thread when parking pins it’s carrier thread

e Full = prints complete stack trace
e Short = includes only frames with problematic code

Thread dumps:
e Doesn’t work by default

e Tooling currently in development
e Some prototypes available that will include all virtual threads started with an Executor

* May evolve until official release

Globant proprietary | Confidential information GlObant)

Virtual threads - Debugger support

Debugger changes:
e You can't view all the virtual threads in the debugger when breaking
e Not supported: stop, interrupt, popFrame, forceEarlyReturn, setValue

Virtual threads + breakpoints:
e Hitting a breakpoint pins the virtual thread to carrier

e Single stepping works until virtual thread yields
e Recommendation: suspend all threads when breakpoint is hit and resume all threads when stepping

* May evolve until official release

Globant proprietary | Confidential information GlObant)

Globant Development Center in NYG,@A

How stuff works in code

e virtual threads are java entities, independent of OS threads
e java.lang.Thread is used for both kinds of threads, virtual and OS
e virtual threads require carrier threads - OS Threads - to run on
a. a carrier thread runs a virtual thread by mounting it
b. if the VT blocks, the stack is stored and the VT is unmounted to be resumed later

e millions of virtual threads can run on few carrier threads

Globant proprietary | Confidential information GlObant)

Hitchhiking

Globant proprietary | Confidential information GlObant)

Hello World

Epublic static void main(String[] args) {
— Thread.startVirtualThread(() -> {
System.out.println("Hellc Loom from "+Thread.currentThread()+"!"):;

F: b

System.out.println("Hellc World from "+Thread.currentThread()+"!"):;

C:\Program Files\Java\jdk-17\bin>java Test.java
Hello Loom from VirtualThread[#15,ForkJoinPool-1-worker-1,CarrierThreads]!

Hello World from Thread[main,5,main]!

-Djdk.defaultScheduler.parallelism=N,

Globant proprietary | Confidential information GlObant)

public static void main(String[] args) throws InterruptedException {

final boolean USE_VIRTUAL_THREADS = false;
final int CARRIER_THREAD_COUNT = 13
final int TASK_COUNT = 2;

// plain old thread factory and thread pool using the new builder

ThreadFactory carrierTF = Thread.ofPlatform().name("carrier#", 0).daemon(true).factory();
ExecutorService carrierPool = Executors.newFixedThreadPool(CARRIER_THREAD_COUNT, carrierTF);
ExecutorService executor;

if(USE_VIRTUAL_THREADS) {

// factory for virtual threads scheduled on the carrier pool
ThreadFactory virtualTF = Thread.ofVirtual()
.scheduler(carrierPool)
.name("virtual#", 0).factory();

// thread executor will spawn a new virtual thread for each task
executor = Executors.newThreadExecutor (virtualTF);

} else {
executor = carrierPool;

for (int i = ©; i < TASK_COUNT; i++)
executor.submit(new WaitAndHurry(i));

executor.shutdown() ;

executor.awaitTermination(20, TimeUnit.SECONDS);
} Globant)»

private final static class WaitAndHurry implements Runnable {
private final static long START_TIME = System.nanoTime();
private Integer index = 0}

WaitAndHurry(Integer index) {
this.index = {index;

}

@Override

public void run() {
doIO(); // block for 2s
doWork(); // compute something for ~2s
print("done");

}

private void doIo() {
print("io");
try {
Thread.sleep(2000);
} catch (InterruptedException ex) {
throw new RuntimeException(ex);
}
}

private void doWork() {
print("work");
long number = 479001599
boolean prime = true;
for(long i = 25 i <= number/2; ++i) {

if(number % i == 0) {
prime = false;
break;

}

}
if (!prime) {throw new RuntimeException("wrong result");} // to prevent the JIT to optimize everything away

}

private void print(String msg) {
double elapsed = (System.nanoTime()-START_TIME)/1_000_000_000.0d}; Globant)

Cdhrame Famacdhamm = Cdrame Fanrmad fI0 HEaN A1anceaadl o

Regular 1 Thread Pool

final boolean USE_VIRTUAL_THREADS = false;
final int CARRIER_THREAD_COUNT = 1;
final int TASK_COUNT = 2;

c:\Program Files\Java\jdk-17\bin>java TestPrez.java

Task 0: 0.
Task 0: 2.
Task 0: 3.
Task>fa 3¢
Task-1= 5.
Task-I: ¥.
CPU:

Carrier0O:

Globant proprietary | Confidential information

00s

Thread[carrier#0,5,main]
Thread[carrier$#0,5,main]
Thread[carrier$#0,5,main]
Thread[carrier$#0,5,main]
Thread[carrier$#0,5,main]
Thread([carrier#0,5,main]

io
work
done
io
work

done

25 1.85s 2S
IDLE WORK IDLE

Task 0 - WAIT Task 0 - WORK

7.69 s

1.85s
WORK

Task 1 - WAIT Task 1 - WORK

Globant)

Virtual Thread Pool with 1 Thread Carrier Pool

Globant

final boolean USE_VIRTUAL_THREADS = true;
final int CARRIER_THREAD_COUNT = 1;
final int TASK_COUNT = 2;

CPU:

0.
.05s
.05s
.87s
.87s
. 728

"N W w o

02s

CarrierQO:
VirtualO:
Virtuall:

c:\Program Files\Java\jdk-17\bin>java TestPrez.java
Task 0:
Task 1:
Task 1:
Task 1:
Task 0:
Task 0:

VirtualThread[virtual#0,carrier#0,main] io
VirtualThread([virtual#l,carrier#0,main] io
VirtualThread([virtual#l,carrier#0,main] work 5 " 72 S
VirtualThread([virtual#l,carrier#0,main] done
VirtualThread([virtual#0,carrier$#0,main] work
VirtualThread[virtual#0,carrier#0,main] done

2s 1.85s 1.85s

IDLE WORK WORK

IDLE Task 1 - WORK Task 0 - WORK
Task 0 - WAIT Task 0 - WORK
Task 1 - WAIT Task 1 - WORK

Globant)

Regular 1 Thread Pool

final boolean USE_VIRTUAL_THREADS = false;
final int CARRIER_THREAD_COUNT = 2;
final int TASK_COUNT = 6;

c:\Program Files\Java\jdk-17\bin>java TestPrez.java

Task 1: 0.01s Thread[carrier#l,5,main] io

Task 0: 0.008 Thread[carrier$#0,5,main] io

Task 1: 2.02s8 Thread[carrier#l,5,main] work

Task 0: 2.02s Thread[carrier$#0,5,main] work 11 144 s
Task 1: 3.86s Thread[carrier$#l,5,main] done

Task 2: 3.86s Thread[carriert#l,5,main] io

Task 0: 3.87s Thread[carrier$#0,5,main] dcne

Task 3: 3.87s Thread[carrier$#0,5,main] io

Task 2: 5.87s Thread[carrier#l,5,main] work

Task 3: 5.88s Thread[carrier#0,5,main] work

Task 3: 7.588 Thread[carrier$#0,5,main] done

Task 4: 7.58s8 Thread[carrier$0,5,main] io

Task 2: 7.71s Thread[carrier$#l,5,main] done

Task 5: 7.71s Thread[carrier#l,5,main] io

Task 4: 9.60s8 Thread[carrier$#0,5,main] work

Task 5: 9.71s Thread[carrier$#l,5,main] work

Task 4: 11.328 Thread[carrier#0,5,main] done

Task 5: 1l.44s Thread[carrier#l,5,main] done Globant)

Regular 1 Thread Pool

Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task

final boolean USE_VIRTUAL_THREADS = true;
final int CARRIER_THREAD_COUNT = 2;
final int TASK_COUNT = 6;

H N O N W W e O e O e WO
e JEetoue et e an Ces’ aet We O TeE vaew e ~08: as eei Aee- eee-oue

e I B OSTR) B O T » IN FV R 'V FV RN VRN O6 T O R e T s s R o T s B s]
W, A Syt Tk Wi 50 MeARe ol

c:\Program Files\Java\jdk-17\bin>java TestPrez.java
.02s
.02s
.04s
.04s
.04s
.04s
.05s

VirtualThread[virtuals#l,carrier$l,main]
VirtualThread[virtual#0,carrier$#0,main]
VirtualThread[virtual$2,carrier$0,main]
VirtualThread[virtual#3,carrier#0,main]
VirtualThread[virtual#4,carrier$#0,main]
VirtualThread([virtual$#5,carrier#0,main]
VirtualThread[virtual#0,carrier#0,main]
VirtualThread[virtual#4,carrier$#l,main]
VirtualThread[virtual#0,carrier$#0,main]
VirtualThread[virtual#5,carrier#0,main]
VirtualThread[virtual$#4,carriersl,main]
VirtualThread[virtual#3,carrier#l, main]
VirtualThread([virtual#3,carrier#l,main]
VirtualThread[virtual$2,carrier$l,main]
VirtualThread[virtuals#5,carrier#0,main]
VirtualThread[virtual$#l,carrier#l,main]
VirtualThread[virtual$2,carriersl,main]
VirtualThread[virtualf#l,carrier#0,main]

work
work
done
work
done
work
done
work
done
work
done
done

7.66 s

Globant)

Simple HTTP Server + JMeter test

Jpublic class Test {

]

public static Double count = 0.0;

public static wvoid main(String[] args) throws Exception {
HttpServer server = HttpServer.create(new InetSocketAddress (2500
HtctpContext context = server.createContext("/test"):;
context.setHandler (Test: :handleRequest) ;
server.start():
System.out.println("Server started on port 8500");

private static void handleRequest (HttpExchange exchange) throws IOException {
new Thread(new Runnable() {

@Override
public void run() {
String responseString = "Reguest con

exchange.getResponseHeaders () .add ("2
exchange.getResponseHeaders () .add ("?
exchange.getResponseHeaders () .add ("2
exchange.getResponseHeaders () .add ("2
exchange.getResponseHeaders () .set ("

gin, content-type,

"true");

try {
Thread.sleep(c000) ;
exchange.sendResponseHeaders (200, responseString.getBytes().length)

OutputStream 0os = exchange.getResponseBody () ;
os.write (responseString.getBytes()):
os.close():

} catch (Exception e) {
e.printStackTrace()

}

}) .starc()

Globant proprietary | Confidential information

ac

Y 0

[l S S S S o

[
QO U WRN O WD m N W

RN NN NN NN

w0

40
41
42
43
44
45

Hpublic class Test {

public static Double count = 0.0;

public static wvoid main(String[] args) tt
HttpServer server = HttpServer.create
HtcpContext context = server.createCc
context.setHandler (Test: :handleReques
server.start():
System.out.println("Serx

private static void handleRequest (HttpExc
Thread.startVirtualThread (new Runnabl

@Override
public void run() {
String responseString = "Requ

exchange.getResponseHeaders ()
exchange.getResponseHeaders ()
exchange.getResponseHeaders ()
exchange.getResponseHeaders ()
exchange.getResponseHeaders ()
try {
Thread.sleep(6000) ;
exchange . sendResponseHeac
OutputStream os = exchanc
os.write (responseString.c
os.close();
} catch (Exception e) {
e.printStackTrace() ;

1

Globant)

JMeter test settings

Thread Group

Name:

Comments:
Action to be taken after a Sampler error

* Continue Start Next Thread Loop Stop Thread Stop Test Stop Test Now

Thread Properties

Number of Threads (users): | 20000
Ramp-Up Period (in seconds): 20
Loop Count: Forever
v Delay Thread creation until needed
Scheduler

Scheduler Configuration
A 1f Loop Count is not -1 or Forever, duration will be min{Duration, Loop Count * iteration duration)

Duration {seconds)

Startup delay (seconds)

Globant proprietary | Confidential information GlObant)

Time Range: \

Heap Memory Usage - Threads
Dumb Threads o siood
JConsole
Used 7,000 ! !
4 418,167,512
400 Mb /\ /\
6,000 1 L
300 Mb 2000
4,000 -
200 Mb 3,000 | _
2,000
100 Mb
1,000 1
Live threads
0.0 Mb 0 <« 18
18:13 18:14 18:13 18:14
Used: 418.2Mb Committed: 587.2Mb Max: 4.2Gb Live: 18 Peak: 8,050 Total: 42,144
Classes r CPU Usage
5,000 30%
25%
Loaded 20%
4 4240
4,000 15%
10%
5%
CPU Usage
3,000 0% <« 0.0%
18:13 18:14 18:13 18:14
Globant proprietary | Confidential information Loaded: 4,240 Unloaded: 0 Total: 4,240 CPU Usage: 0.0%

lobant)

Dumb Threads - response codes

[200 M Non HTTP response code: java.net.SocketException I Non HTTP response code: org.apache.http.conn HitpHostConnectException
20p0

1800

1600

1400

1200

1000

800

Number of reponses /sec

600
400

200

0 e
00:00:00 00:00:06 00:00:12 00:00:18 00:00:24 00:00:30 00:00:36 00:00:42 00:00:48 00:00:54 00:01:01
Elapsed time (qranularity: 1 sec)

Globant proprietary | Confidential information GlObant)

Dumb Threads - response time per
thread count

B HTTP Request

11 400

10800

10 200

9600

9000

Response times in ms

8400

7800

7200

6 600

6 000 1M
0

1185 2371 3557 4743 5929 7
Number of active threads

Globant proprietary | Confidential information Globant)

Dumb Threads - summary - 29%
errors

Summary Report

Name: mmary Report
Comments:
r Write results to file / Read from file

Filename

Globant proprietary | Confidential information

Errors

Successes

Configure

Globant)

Time Range: }hAl vﬁ‘}
Virtual Threads ~Heap Memory Usage ~Threads
800 Mb 40
JConsole
700 Mb Live threads
<« 34
600 Mb
30
500 Mb
400 Mb
Used
b 4 328,553,328
300M 20
200 Mb \
100 Mb
0.0 Mb 10
18:18 18:18
Used: 328.6 Mb Committed: 895.5Mb Max: 4.2Gb Live: 34 Peak: 34 Total: 35
rClasses ~CPU Usage
5,000 20%
15%
Loaded
4 4,160
4,000 1 10%
5%
CPU Usage
3,000 0% 4 0.0%
18:18 18:18
Globant proprietary | Confidential informe Loaded: 4,160 Unloaded: 0 Total: 4,160 CPU Usage: 0.0% Globant)

Virtual Threads
JConsole

[l 200
3000

No errors...

1200

Number of reponses /sec

900
600

300

0
00:00:00 00:00:05 00:00:11 00:00:16 00:00:22 00:00:28 00:00:33 00:00:39 00:00:44 00:00:50 00:00:56
Elapsed time (granularity: 1 sec)

Globant proprietary | Confidential information GlObant)

Virtual Threads
JConsole

W HTTP Request
8 000

7800

7 600

7400

7200

7000 1

6800

Response times in ms

6 600

6400

6200

Al]

1248 2 496 3744 4992 6240 7 488 8736 9984 11 232 12 481
Number of active threads

6000 *
0

Globant proprietary | Confidential information Globant)

Virtual Threads
JConsole

Summary Report

Name: Summary Report
Comments:
r Write results to file / Read from file

Filename

Globant proprietary | Confidential information GlObant)

Elpublic class Test {
Smart Threads - Executor
Code

public static Double count = 0.0;
private static ExecutorService executorService = Executors.newCachedThreadPool() ;

= public static wvoid main(String[] args) throws Exception {

HttpServer server = HttpServer.create(new InetSocketAddress(Z500), 0);
HttpContext context = server.createContext("/test");
context.setHandler (Test: :handleRequest) ;

server.start():
System.out.println("S

500") ;

[a)
3
La]
a
r
ct
o

= private static wvoid handleRequest (HttpExchange exchange) throws IOException {
executorService.execute (new Runnable () {

@Override
= public void run() {
String responseString = "Reguest cou

w
w

exchange.getResponseHeaders () .add("2c
exchange.getResponseHeaders () .add("Acc
exchange.getResponseHeaders () .add("2cc
exchange.getResponseHeaders () .add("2cc
exchange.getResponseHeaders () .set ("
=] try {
Thread.sleep(€000) ;
exchange.sendResponseHeaders (200, responseString.getBytes().length);
OutputStream os = exchange.getResponseBody() ;
os.write(responseString.getBytes()):
os.close();
} catch (Exception e) {
e.printStackTrace() ;

w

Mm w w
w

f~]

Globant proprietary | Confidential information

Smart Threads - Executor
JConsole

Globant proprietary | Confidential information

Time Range: R!I v

~Heap Memory Usage ~Threads
2.0Gb ¢ 20,000
1.5Gb ¢ 15,000
L Used / \
Bagh 4 929,417,968 10,000
0.5Gb 1 5,000
Live threads
0.0 Gb 0 « 17
18:33 18:34 18:33 18:34
Used: 929.4Mb Committed: 1.5Gb Max: 4.2Gb Live: 17 Peak: 11,535 Total: 11,536
~Classes ~CPU Usage
5,000 1 20%
15%
Loaded
4 4,162
4,000 1 10%
5%
CPU Usage
3,000 + 0% <« 0.1%
18:33 18:34 18:33 18:34
Loaded: 4,162 Unloaded: 0 Total: 4,162 CPU Usaage: 0.1%

Smart Threads - Executor
JConsole

[200 M Non HTTP response code: org.apache.http.conn.HitpHostConnectException
3000

2700

2400

2100

1800

1500

1200

Number of reponses /sec

900
600

300

e

0
00:00:00 00:00:05 00:00:11 00:00:16 00:00:22 00:00:28 00:00:33 00:00:39 00:00:44 00:00:50 00:00:56
Elapsed time (granularity: 1 sec)

Globant proprietary | Confidential information GlObant)

Smart Threads - Executor

JConsole

W HTTP Request
10000

9600
9200
8800
8400

8000

Response times in ms

7600

7200

6800

6400 ‘”
2 23

NI

Virtual Threads

Globant proprietary | Confidential information

4964

6205
Number of active threads

7 446

~
=
=}
=)

onse times in ms
~
o
=}
=)

!

Re;
=3
=3
=}
=)

6600

6400

6200

12411

Thread pool implementation

Green line at 6.5 sec

6000
0

1248

2496

4992 6240 7488 8736 9984 11232 12481
Number of active threads

Smart Threads - Executor
JConsole

results to file / Read from file

Log/Display Only: Errors Configure

Globant proprietary | Confidential information GlObant)

3 T
1
/
|
!* ‘ | “'g —— — ===
& S \\‘ - e L
' ’
" = e E

Globant Development Center La Plata, Argentina

What we know so far

Project Loom is delivering on it's promise - reducing the
difficulty of writing efficient concurrent applications

Virtual threads implicitly convert blocking APlIs into a
async/await pattern - and you won't even have to be aware
of it as user of an API (most of the time at least).

Release? Not JDK17 - fingers crossed for JDK 18 ? No
promises have been made...

Globant proprietary | Confidential information

Useful links

Taking a look at Virtual Threads (Project Loom)
o One code example showed was from this article - attribution license

Loom Proposal.md
o Hear it from the dev lead of the project himself - what Loom wants to achieve

Java's Project Loom, Virtual Threads and Structured Concurrency with Ron Pressler
o Podcast about Project Loom - with Ron - the Dev Lead of the project

Download JDK18 + Loom Builds - to run it yourself
o https://jdk.java.net/loom/

o The existence of EA builds does not imply that the functionality being tested will be present in any
particular GA release.

All examples are on Github here: https:/github.com/lucaalex87/java-loom-test

Globant proprietary | Confidential information

Globant)

https://mbien.dev/blog/entry/taking-a-look-at-virtual
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://www.infoq.com/podcasts/java-project-loom/
https://jdk.java.net/loom/
https://jdk.java.net/loom/
https://github.com/lucaalex87/java-loom-test

Globant Development Center in NYG;@A

Globant Development Center in NYCI,;USjL

