
Demystifying
Java Fibers

Who am I?
Globant TDC Cluj

Alex Dan Luca, Java architect in

Globant Cluj

Andrei Draghia, Java architect in

Globant Cluj

1. Use your hardware to the MAX
2. What tools do we have now?
3. What does Project Loom bring?
4. Mad science experiments :D
5. Takeaway

Agenda

Use your hardware to the MAX
Free lunch?

Globant Development Center in NYC, USA

The free ‘performance’ lunch is over

Globant proprietary | Confidential information

Herb Sutter - 2005

Globant proprietary | Confidential information

Stanford - CPUDB

The free ‘performance’ lunch is over

Globant proprietary | Confidential information

Multi threading

I/O

Waste of resources

Advanced frameworks - require DEV
training

What tools do we have now?

Globant Development Center in NYC, USA

●

Parallelism:
● Speed up a task by splitting it to sub-tasks and exploiting multiple processing units
● Achieved by multiple CPUs
● Does a lot of things simultaneously
● Performance: latency (time unit)

Concurrency v.s. Parallelism

Globant proprietary | Confidential information

Concurrency:
● Schedule multiple largely independent tasks to a set of computational resources
● Achieved by context switching
● Deals with a lot of things simultaneously
● Performance: throughput (tasks / time unit)

L = λ * W
Level of concurrency Latency

Throughput

How do we achieve concurrency?

Globant proprietary | Confidential information

Threading models

Globant proprietary | Confidential information

● Single threaded - Sequential

● Multi-threaded - Thread pool

● Multi-threaded - Fork/Join

● Single threaded - Event Loop (e.g. Javascript)

● LMAX Disruptor

● Reactive programming

● Co-rutines - Async / Await (e.g. Python)

● User-land threads (e.g. Go)

* Not exhaustive

Single threaded - Sequential

Globant proprietary | Confidential information

● How most of us learned to code

● How most languages were originally designed

● The code is executed in sequence, instruction by instruction

● No concurrent memory access

● Latency is the driving factor of the level of concurrency

Single threaded - Sequential

Globant proprietary | Confidential information

Model Throughput Parallelism Ease of
understanding

Development
Experience Error handling Debugging Profiling

Single threaded 1 task None - low Easy Good Easy Easy Easy

Thread pool

Fork/join

Event loop

Reactive

Async / await

User-land threads

Multi-threaded - Thread Pool

Globant proprietary | Confidential information

● Executing a set of tasks by a group of similar threads
● A task keeps the thread until it finished execution
● Increased complexity and problems caused by sharing (race conditions, thread local leaks etc.)
● Problematic cancellations
● Multiple types of thread pools: fixed, cached (elastic), scheduled, single threaded etc.
● Number of threads and efficient usage directly influences the level of concurrency.

Multi-threaded - Thread Pool

Globant proprietary | Confidential information

Model Throughput Parallelism Ease of
understanding

Development
Experience Error handling Debugging Profiling

Single threaded 1 task None - low Easy Good Easy Easy Easy

Thread pool Task/thread Medium++ Easy Good Easy Medium-- Medium--

Fork/join pool

Event loop

Reactive

Async / await

User-land threads

Multi-threaded - Fork/Join

Globant proprietary | Confidential information

● Thread Pool model + divide and conquer

● Each thread in the pool has a Dequeue

● Implements a work-stealing algorithm

● Increases efficiency for high number of tasks

● Shares same challenges with thread pools

● Not friendly with blocking code

Multi-threaded - Fork/Join

Globant proprietary | Confidential information

Model Throughput Parallelism Ease of
understanding

Development
Experience Error handling Debugging Profiling

Single threaded 1 task None - low Easy Good Easy Easy Easy

Thread pool Task/thread Medium++ Easy Good Easy Medium-- Medium--

Fork/join pool Task/thread++ High* Medium Average Medium-- Medium Medium

Event loop

Reactive

Async / await

User-land threads

Single threaded - Event Loop

Globant proprietary | Confidential information

● Only 1 thread handles tasks from a queue in a while loop

● Makes use of callbacks and non-blocking I/O

● Avoids race conditions and general leaks

● Often incompatible APIs (in Java)

● Introduces new challenges:
○ Callback hell
○ Lost context
○ Unpredictable executions

● Cooperative concurrency model

Single threaded - Event Loop

Globant proprietary | Confidential information

Model Throughput Parallelism Ease of
understanding

Development
Experience Error handling Debugging Profiling

Single threaded 1 task None - low Easy Good Easy Easy Easy

Thread pool Task/thread Medium++ Easy Good Easy Medium-- Medium--

Fork/join pool Task/thread++ High Medium Average Medium-- Medium Medium

Event loop High None - low Medium Average - Bad Medium Medium Hard

Reactive

Async / await

User-land threads

Reactive model

Globant proprietary | Confidential information

● Makes the push-based publisher - subscriber pattern a first level citizen

● Logic is encapsulated in steps of data stream processing

● Threads become abstracted by Schedulers (sort of thread pools)

● Concurrency mainly by publishOn / subscribeOn

● Tooling support gradually evolved

Reactive model

Globant proprietary | Confidential information

● Solves the callback hell

● Backpressure handling

● Complex logic becomes more concise

● Can signal end of stream

● Can re-create algorithms like fork-join, disruptor etc.

Reactive model

Globant proprietary | Confidential information

● Completely new API; low compatibility

● Steep learning curve

● Easy to do the wrong thing

● Can get quite complex

● Tooling support gradually evolved, but still not

as good

Reactive model

Globant proprietary | Confidential information

Model Throughput Parallelism Ease of
understanding

Development
Experience Error handling Debugging Profiling

Single threaded 1 task None - low Easy Good Easy Easy Easy

Thread pool Task/thread Medium++ Easy Good Easy Medium-- Medium--

Fork/join pool Task/thread++ High Medium Average Medium-- Medium Medium

Event loop High None - low Medium Average - Bad Medium Medium Hard

Reactive Very High High Hard Good Medium Hard Hard

Async / await

User-land threads

Coroutines - Async / Await

Globant proprietary | Confidential information

● Builds on top of the Event loop thread model

● Adds support for explicit means to transfer control to other coroutines - async / await

● Can create millions of coroutines; lightweight

● Generators, actor models, state machines

● Cooperative concurrency model

Corutines - Async / Await

Globant proprietary | Confidential information

Model Throughput Parallelism Ease of
understanding

Development
Experience Error handling Debugging Profiling

Single threaded 1 task None - low Easy Good Easy Easy Easy

Thread pool Task/thread Medium++ Easy Good Easy Medium-- Medium--

Fork/join pool Task/thread++ High Medium Average Medium-- Medium Medium

Event loop High None - low Medium Average - Bad Medium Medium Hard

Reactive Very High High Hard Good Medium Hard Hard

Async / await High None - low Medium Average Easy Medium Medium

User-land threads

User-land threads

Globant proprietary | Confidential information

● Coroutines multiplexed on threads a.k.a Green Threads or Fibers

● Implicitly yields control.

● Implementation relies a lot on the language specifics.

● Keeps a simpler, more classic programming model

● Re-introduces challenges appearing with shared resources

● Provides new ways to tackle them: channels, better race conditions detection

User-land threads

Globant proprietary | Confidential information

Model Throughput Parallelism Ease of
understanding

Development
Experience Error handling Debugging Profiling

Single threaded 1 task None - low Easy Good Easy Easy Easy

Thread pool Task/thread Medium++ Easy Good Easy Medium-- Medium--

Fork/join pool Task/thread++ High Medium Average Medium-- Medium Medium

Event loop High None - low Medium Average - Bad Medium Medium Hard

Reactive Very High High Hard Good Medium Hard Hard

Async / await High None - low Medium Average Easy Medium Medium

User-land threads Very High High Easy Good Easy Medium Medium

What does Project Loom bring?

Globant Development Center in NYC, USA

"I think [Project] Loom is going to kill reactive programming"

Brian Goetz
Java Language Architect at Oracle.

Author, Java Concurrency in Practice

What is Project Loom?

Globant proprietary | Confidential information

A. Teaching Java duke to weave carpets with the loom?

B. Preventing a looming danger regarding Java usage?

C. Attempt to modernise concurrency in Java?

Project Loom Goals

Globant proprietary | Confidential information

● Reduce the difficulty of writing efficient concurrent applications
● Eliminate the tradeoff between simplicity and efficiency in writing

concurrent programs

● Ensure easy adoption - leverage the existing APIs
● Thread.currentThread() and ThreadLocal - keep working

>2KB metadata
>1MB of stack

200-300Kb metadata
Pay-as-you-go stack

1-10µs ~200ns

Terminology

Globant proprietary | Confidential information

1. Virtual threads Thread.startVirtualThread(Runnable)

2. Continuations suspend, resume tasks - behind the scenes

3. Schedulers ForkJoinPool used underneath

Multiplexing virtual threads

Globant proprietary | Confidential information

Alan Bateman - Project Loom: Modern scalable concurrency for the Java platform

Operations that are virtual thread friendly

Globant proprietary | Confidential information

Operations that pin the thread

Globant proprietary | Confidential information

Operations that pin the thread

Globant proprietary | Confidential information

In general, operations that get an object monitor, pin the carrier thread
synchronized + Virtual threads = not love

Virtual threads - Troubleshooting

Globant proprietary | Confidential information

Detecting pinning:
● -Djdk.tracePinnedThreads(=full|short)
● Prints stack trace of virtual thread when parking pins it’s carrier thread

● Full = prints complete stack trace
● Short = includes only frames with problematic code

Thread dumps:
● Doesn’t work by default
● Tooling currently in development
● Some prototypes available that will include all virtual threads started with an Executor

* May evolve until official release

Virtual threads - Debugger support

Globant proprietary | Confidential information

Debugger changes:
● You can’t view all the virtual threads in the debugger when breaking
● Not supported: stop, interrupt, popFrame, forceEarlyReturn, setValue

Virtual threads + breakpoints:
● Hitting a breakpoint pins the virtual thread to carrier
● Single stepping works until virtual thread yields
● Recommendation: suspend all threads when breakpoint is hit and resume all threads when stepping

* May evolve until official release

Mad science experiments :D

Globant Development Center in NYC, USA

How stuff works in code

Globant proprietary | Confidential information

● virtual threads are java entities, independent of OS threads

● java.lang.Thread is used for both kinds of threads, virtual and OS

● virtual threads require carrier threads - OS Threads - to run on

a. a carrier thread runs a virtual thread by mounting it

b. if the VT blocks, the stack is stored and the VT is unmounted to be resumed later

● millions of virtual threads can run on few carrier threads

Hitchhiking

Globant proprietary | Confidential information

Hello World

Globant proprietary | Confidential information

C:\Program Files\Java\jdk-17\bin>java Test.java

Hello Loom from VirtualThread[#15,ForkJoinPool-1-worker-1,CarrierThreads]!

Hello World from Thread[main,5,main]!

-Djdk.defaultScheduler.parallelism=N,

Globant proprietary | Confidential information

Globant proprietary | Confidential information

Globant proprietary | Confidential information

 final boolean USE_VIRTUAL_THREADS = false;
 final int CARRIER_THREAD_COUNT = 1;
 final int TASK_COUNT = 2;

Regular 1 Thread Pool

7.69 s

Globant proprietary | Confidential information

 final boolean USE_VIRTUAL_THREADS = true;
 final int CARRIER_THREAD_COUNT = 1;
 final int TASK_COUNT = 2;

Virtual Thread Pool with 1 Thread Carrier Pool

5.72 s

Globant proprietary | Confidential information

 final boolean USE_VIRTUAL_THREADS = false;
 final int CARRIER_THREAD_COUNT = 2;
 final int TASK_COUNT = 6;

Regular 1 Thread Pool

11.44 s

Globant proprietary | Confidential information

 final boolean USE_VIRTUAL_THREADS = true;
 final int CARRIER_THREAD_COUNT = 2;
 final int TASK_COUNT = 6;

Regular 1 Thread Pool

7.66 s

Simple HTTP Server + JMeter test

Globant proprietary | Confidential information

TOPIC

JMeter test settings

Globant proprietary | Confidential information

Dumb Threads
JConsole

Globant proprietary | Confidential information

Dumb Threads - response codes

Globant proprietary | Confidential information

Dumb Threads - response time per
thread count

Globant proprietary | Confidential information

Dumb Threads - summary - 29%
errors

Globant proprietary | Confidential information

Virtual Threads
JConsole

Globant proprietary | Confidential information

Virtual Threads
JConsole

Globant proprietary | Confidential information

No errors...

Virtual Threads
JConsole

Globant proprietary | Confidential information

Virtual Threads
JConsole

Globant proprietary | Confidential information

Smart Threads - Executor
Code

Globant proprietary | Confidential information

Smart Threads - Executor
JConsole

Globant proprietary | Confidential information

Smart Threads - Executor
JConsole

Globant proprietary | Confidential information

Smart Threads - Executor
JConsole

Globant proprietary | Confidential information

Thread pool implementation

Virtual Threads

Green line at 6.5 sec

Smart Threads - Executor
JConsole

Globant proprietary | Confidential information

Globant Development Center La Plata, Argentina

Takeaway

What we know so far

Globant proprietary | Confidential information

1. Project Loom is delivering on it’s promise - reducing the
difficulty of writing efficient concurrent applications

2. Virtual threads implicitly convert blocking APIs into a
async/await pattern - and you won't even have to be aware
of it as user of an API (most of the time at least).

3. Release? Not JDK17 - fingers crossed for JDK 18 ? No
promises have been made...

Useful links

Globant proprietary | Confidential information

More Info

1. Taking a look at Virtual Threads (Project Loom)
○ One code example showed was from this article - attribution license

2. Loom Proposal.md
○ Hear it from the dev lead of the project himself - what Loom wants to achieve

3. Java's Project Loom, Virtual Threads and Structured Concurrency with Ron Pressler

○ Podcast about Project Loom - with Ron - the Dev Lead of the project

4. Download JDK18 + Loom Builds - to run it yourself
○ https://jdk.java.net/loom/
○ The existence of EA builds does not imply that the functionality being tested will be present in any

particular GA release.

5. All examples are on Github here: https://github.com/lucaalex87/java-loom-test

https://mbien.dev/blog/entry/taking-a-look-at-virtual
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://www.infoq.com/podcasts/java-project-loom/
https://jdk.java.net/loom/
https://jdk.java.net/loom/
https://github.com/lucaalex87/java-loom-test

Q & A

Globant Development Center in NYC, USA

Thank You!

Globant Development Center in NYC, USA

